Kamis, 16 Oktober 2014

Breakfast of IMO Math Part 2

TEST for International Mathemathic Olympiad 2014
Breakfast of IMO Math Part 1

You may read this writing from notebook for
Convenience and completeness of a proof.
6 a,b,c>0, prove that
abc≥(a+b-c)(b+c-a)(c+a-b)

7 Let a,b,c>0, such that
a^2 b^2+b^2 c^2+c^2 a^2=3 Prove that
(a+b)(c^2+1/a^2 )+(b+c)(a^2+1/b^2 )+
(c+a)(b^2+1/c^2 )≥2abc+6

8
a,b,c>0,a+b+c=3 prove that
1+8acb≥9min{a,b,c}

9 Let x,y,and z be consecutive Prime
Prove that x+y≥z

10 Given a,b,c be positive integers such that
a^2/(b+c),b^2/(c+a),c^2/(a+b) be positive integers
Prove (a,b,c)>1 (G.C.D)

Solution :
6 For all a,b,c>0
We will show by using well sharing method
Considering, (a+b-c)(b+c-a)
= ab+ac-a^2+b^2+bc-ba-cb-c^2+ca
=b^2+2ac-a^2-c^2
≤b^2+2ac-ac-ac
=b^2
Next b^2 (c+a-b)
=b(bc+ba-b^2 )
≤b(ac+bb-b^2 )
= b(ac+b^2-b^2 )
=abc
Therefore, abc≥(a+b-c)(b+c-a)(c+a-b)
7 Let a,b,c>0, such that
a^2 b^2+b^2 c^2+c^2 a^2=3abc
So, ab/c+bc/a+ca/b=3, by using well sharing method
≥ab/a+bc/c+ca/b
≥ab/a+bc/a+ca/c
=a+b+c
Which, make a^2+b^2+c^2≤3
1/a^2 +1/b^2 +1/c^2 ≥3
But, (a+b)(c^2+1/a^2 )+(b+c)(a^2+1/b^2 )+
+(c+a)(b^2+1/c^2 )≥(a+b)(a^2+1/a^2 )+
+(b+c)(c^2+1/b^2 )+(c+a)(b^2+1/c^2 )
≥(a+b)(a^2+1/a^2 )+
+(b+c)(b^2+1/b^2 )+(c+a)(c^2+1/c^2 )
≥(a+b)2+(b+c)2+(c+a)2
≥2(a+b+c)+2(a+b+c)
Hence,(a+b)(c^2+1/a^2 )+(b+c)(a^2+1/b^2 )+
+(c+a)(b^2+1/c^2 )≥2(a+b+c)+6
Because 2(a+b+c)≤6 OKO (it abstract)

8
a,b,c>0,a+b+c=3, we have
0<abc≤1, 0<min{a,b,c}≤1,
And as a≤abc,if a≤b≤c
So, min{a,b,c}≤abc
9min{a,b,c}≤9abc
≤8abc+1

9 Let x,y,and z be consecutive Prime
From the proof of Pual Erdos say that
All positive integers n are greater than 1
From n to 2n there exist an integer k
Being Prime
In this case if assume that x+y<z
Then will make the proof of Pual Erdos may
Has a contradiction is that z≥2y
That is, among y and 2y has no Prime
Such as x=17,y=19,z is ?
As x+y<z,so z=37
Because x+y=17+19=36
There is a contradiction is that
Among 17 and 34 has no Prime OK

10 Given a,b,b be positive integers such that
a^2/(b+c),b^2/(c+a),c^2/(a+b) be positive integers
Hence, ((b+c))⁄a^2 ,((c+a))⁄b^2 ,((a+b))⁄c^2
a^2=k(b+c),b^2=m(c+a),c^2=n(a+b)
a=√(k(b+c) ),b=√(m(c+a) ),c=√(n(a+b) )
If give (a,b,c)=d, then
(√(k(b+c) ),√(m(c+a) ),√(n(a+b) ))=d
From its definition, we have
d⁄√(k(b+c) ),d⁄√(m(c+a) ),d⁄√(n(a+b) )
dx=√(k(b+c) ),dy=√(m(c+a) ) and
dz=√(n(a+b) ) Which imply that
d^2 x^2= k(b+c), d^2 y^2= m(c+a), and
d^2 z^2= m(a+b)
But, (b+c)
x^2,(c+a)y^2,(a+b)z^2
Thence, ((b+c))⁄d^2 ,((c+a))⁄d^2 ,((a+b))⁄d^2
We see that d>1 because b+c,c+a,a+b≥2
Therefore, its G. C.D must be greater than 1
Acknowledgement


Rabu, 15 Oktober 2014

TEST For International Mathemathic Olympiad 2014


TEST for International Mathemathic Olympiad 2014
Breakfast of IMO Math Part 1

You may read this writing from notebook for
Convenience and completeness of a proof
1
a,b,c>0, prove that
2((a+b)/2-√ab)≤3((a+b+c)/3-
abc)
Prove that if 2-y-|x|=0, then x^2+y^2≥2

3 Give |x|>1,|y|>1, prove that
|a+b|≤|ab+1|

4
x,y,z>0, prove that
√(xy+4yz+4zx)/(x+y)+√(yz+4xz+4xy)/(y+z)+√(xz+4xy+4yz)/(z+x)≥9/2

5
a,b,c>0, prove that
1/(a^2+b^2 )+1/(b^2+c^2 )+1/(c^2+a^2 )≥27/(2(a+b+c)^2 )

GOOD LUCK




Solution :
Proof 1 for a,b,c>0
We will prove by using well sharing method
Considering, 2((a+b)/2-√ab)≤3((a+b+c)/3-
abc)
↔a+b-2√ab≤a+b+c-3
abc
↔-2√ab≤c-3
abc
↔ 3
abc≤2√ab+c
Next we will show that
c/
abc+√ab/abc+√ab/abc≥3
Considering, c/
abc+√ab/abc+√ab/abc
=√(6&c^6/(a^2 b^2 c^2 ))+√(6&(a^3 b^3)/(a^2 b^2 c^2 ))+√(6&(a^3 b^3)/(a^2 b^2 c^2 ))
=√(6&c^4/(a^2 b^2 ))+√(6&ab/c^2 )+√(6&ab/c^2 )
≥√(6&c^4/(a^2 c^2 ))+√(6&ab/c)+√(6&ab/b^2 )
≥√(6&c^4/(c^2 c^2 ))+√(6&ab/a^2 )+√(6&ab/b^2 )
=√(6&1)+√(6&b/a)+√(6&a/b)
≥1+2=3 OK
Therefore, it is to be true.

2 Since 2-y-|x|=0 will obtain that
|x|+y=2
|x|^2+2|x|y+y^2=4
But |x|+y=2, then |x|y≤1
Then 2|x|y≤2
It imply that |x|^2+y^2≥2
That is, x^2+y^2≥2 OK



3 Give |x|>1,|y|>1, we have
x^2>1 and y^2>1
x^2-1>0 and y^2-1>0
x^2 (y^2-1)>y^2-1 and
y^2 (x^2-1)>x^2-1
Which it make x^2 y^2-x^2>y^2-1
And y^2 x^2-y^2>x^2-1
Next, x^2 y^2+1>x^2+y^2
x^2 y^2+2xy+1>x^2+2xy+y^2
(xy+1)^2>(x+y)^2
|xy+1|^2>|x+y|^2
Therefore, |xy+1|>|x+y| OK

4 For all x,y,z>0
We will prove by using well sharing method
Seeing, √(xy+4yz+4zx)/(x+y)+√(yz+4xz+4xy)/(y+z)+√(xz+4xy+4yz)/(z+x)
≥√(xy+4xy+4zx)/(x+y)+√(yz+4xz+4yz)/(y+z)+√(xz+4xy+4yz)/(z+x)
≥√(xy+4xy+4xy)/(x+y)+√(yz+4xz+4yz)/(y+z)+√(xz+4zx+4yz)/(z+x)
≥√(xy+4xy+4xy)/(x+y)+√(yz+4yz+4yz)/(y+z)+√(xz+4zx+4zx)/(z+x)
≥√9xy/(x+x)+√9yz/(y+z)+√9xz/(z+y)
≥(3√xy)/(x+x)+(3√yz)/(y+z)+(3√xz)/(z+y)
≥(3√xy)/(x+x)+(3√yz)/(y+y)+(3√xz)/(z+z)
=3/2 (√(xy/x^2 )+√(yz/y^2 )+√(zx/z^2 ))
=3/2 (√(y/x)+√(z/y)+√(x/z))
≥3/2 x3= 9/2 OKO
Therefore, it is to be true.

5 For all a,b,c>0
We will show by using well sharing method
1/(a^2+b^2 )+1/(b^2+c^2 )+1/(c^2+a^2 )≥27/(2(a+b+c)^2 )
↔(a+b+c)^2/(a^2+b^2 )+(a+b+c)^2/(b^2+c^2 )+(a+b+c)^2/(c^2+a^2 )≥27/2
We will show that it is to be true
Considering, (a+b+c)^2/(a^2+b^2 )+(a+b+c)^2/(b^2+c^2 )+(a+b+c)^2/(c^2+a^2 )
≥(a+a+c)^2/(a^2+b^2 )+(b+b+c)^2/(b^2+c^2 )+(a+b+c)^2/(c^2+a^2 )
≥(a+a+a)^2/(a^2+b^2 )+(b+b+c)^2/(b^2+c^2 )+(c+b+c)^2/(c^2+a^2 )
≥(a+a+a)^2/(a^2+b^2 )+(a+b+b)^2/(b^2+c^2 )+(c+c+c)^2/(c^2+a^2 )
≥(9a^2)/(a^2+a^2 )+(9b^2)/(b^2+c^2 )+
9c^2/(c^2+b^2 )
≥(3a^2)/(a^2+a^2 )+(3b^2)/(b^2+b^2 )+
3c^2/(c^2+c^2 )
=(3a^2)/(2a^2 )+(3b^2)/(2b^2 )+
3c^2/(2c^2 )
=3/2+3/2+3/2=9/2
Therefore, 1/(a^2+b^2 )+1/(b^2+c^2 )+1/(c^2+a^2 )≥27/(2(a+b+c)^2 )

GOOD LUCK

TIPS DAN TRIK BERHITUNG CEPAT AKAR BILANGAN DESIMAL


TIPS DAN TRIK BERHITUNG CEPAT AKAR BILANGAN DESIMAL

Apakah Anda sudah berpikir bagaimana menghitung nilai akar tanpa menggunakan kalkulator ? Mungkin jika kita menghitung V25, V36 atau V49, tentu kita bisa hitung dengan mudah, tapi bagaimana jika kita akan menghitung V 4,6 atau V 8,4? Bilangan yang baru saja saya sebutkan adalah bilangan desimal. Tentu tidak bisa dengan hanya mengkedipkan mata seperti soal sebelumnya. Pada tulisan ini, saya akan mengulas bagaimana cara menghitungnya, disini akan mencoba memanfaatkan turunan.
Tanda Ö dibaca akar pangkat
misal kita punya soal Öz dengan z = x + Dx
maka rumus yang akan kita gunakan
RUMUS : f (x +  D x) = f(x) + dy = f(x) + f’(x) Dx
dengan : x = bilangan bulat kuadrat sempurna yang paling dekat dengan z
y =  Öx  dan dx =  D x  serta  D x = z - x
sehingga diperoleh y = x1/2
dy = 1/2 (x-1/2) dx
untuk lebih jelasnya, perhatikan contoh berikut.


1.       Hitung hampiran dari Ö 4,6
nilai x nya adalah 4 karena 4 lebih dekat dengan 4,6 (4 < 4,6 < 9) dan 4 = 22 (kuadrat sempurna)
D x = z – x
= 4,6 – 4 = 0,6
dy =  1/2 (x-1/2) dx
dy = 1/(2Öx) dx
     = 1/(2Ö4) * (0,6)
=  0,6/4
= 0,15
Artinya bahwa nilai Ö 4,6 = Ö4 + 0,15
= 2 + 0,15
= 2,15
2.       Hitung hampiran dari Ö 8,2
nilai x nya adalah 9 karena 9 lebih dekat dengan 8,2 (4 < 8,2 < 9) dan 9 = 32 (kuadrat sempurna)
D x = z – x
= 8,2 – 9 = -0,8
dy = 1/(2Ö9) dx
= 1/6 * (-0,8)
= - 0,8 / 6 atau 8/60 = 2/15
= -0,133
Artinya bahwa nilai Ö 8,2 = Ö9 – 0,133
= 3 – 0,133
= 2,867

Mudah dan Cepat bukan?
Teknik diatas disebut Metode Turunan Hampiran Penarikan Akar Bilangan.
Selamat Mencoba Pecinta Matematika

@ SEMOGA BERMANFAAT @