BISMILLAH (Salam Math
Lovers)
EXTREAM OF MATH 2014
If bc – k = a^2 and ca
– k = b^2, prove that c^2 = ab – k
PLEASE SOLVE IT...
Solution :
We must divide in two
cases.
Cases 1.
bc – k = a^2
ca – k = b^2 +
(elimination)
bc + ca – 2k = a^2 +
b^2
c(a + b) = a^2 + b^2
+ 2k
c(a + b) = (a + b)^2
– 2ab + 2k
c= [(a + b)^2 – 2ab +
2k]/( (a + b)…get equation 1
Cases 1.
bc – k = a^2
ca – k = b^2 - (elimination)
bc – ca = a^2 – b^2
bc – ca = (a + b) (a
– b)
c (b – a) = (a + b)
(a – b)
c = [(a + b) (a – b)]
/ (b – a)
- c = a + b…get
equation 2.
And then Subtitute
equation 1 dan 2 to get equation 3
c= [(a + b)^2 – 2ab +
2k]/( (a + b)
c = [(-c)^2 – 2(ab –
k) ]/ -c
c^2 – 2(ab – k) = -
c^2
c^2 + c^2 = 2 (ab – k
)
2c^2 = 2 (ab – k)
So finally, we can
prove that
c^2 = ab – k
By AWK – Bogor
Indonesia
\Cheers and bravo
guys/ ^_^
Tidak ada komentar:
Posting Komentar